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A NOTE FROM

AIM

#playwithmath

Dear Math Teachers’ Circle Network,

Summer is exciting for us, because MTC immersion
workshops are happening all over the country. We like
seeing the updates in real time, on Twitter. Your enthu-
siasm for all things math and problem solving is conta-
gious!

Here are some recent tweets we enjoyed from MTC im-
mersion workshops in Cleveland, OH; Greeley, CO; and
San Jose, CA, respectively:

What happens when you cooperate in Blokus?
Try and create designs with rotational symmetry.
#toocool #jointhemath - @CrookedRiverMTC

Have MnMs, have combinatorial games
@NoCOMTC - @PaulAZeitz

Patterns in math are powerful! Always trying to
get my Ss to look for #patterns. Stumbled upon
Euler's Formula today. @BayAreaMTCs -
@valeriehu6

With each tweet, the underlying message is clear: “Math
is social, creative, and energizing” We like that Math
Teachers’ Circles play a part in encouraging this at-
titude. We also like seeing teachers treated to a math-
ematical vacation for a few days. They earned it!

American Institute
of Mathematics
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In this issue of the MTCircular, we hope you find some
fun interdisciplinary math problems to try with your
MTCs. In “A Problem Fit for a Princess,” Chris Goff
traces the 2000-year history of a fractal that inspired his
MTC'’s logo. In “Polygons and Prejudice,” Anne Ho and
Tara Craig use a mathematical frame to guide a con-
versation about social issues. In “Daydreams in Music,”
Jeremy Aikin and Cory Johnson share a math session
motivated by patterns in musical scales. And for those
of you looking for ways to further engage your MTC
participants’ mathematical thinking, Chris Bolognese
and Mike Steward’s “Using Problem Posing to Empow-
er MTC Participants” will provide plenty of food for
thought.

Helping regions and states build networks of MTCs
continues to be our biggest priority nationally. We are
delighted to help encourage the development of addi-
tional regional networks of MTCs by providing consult-
ing, expert mentors, and seed funding when available.
Please contact circles@aimath.org if you are interested
in finding out more.

Happy problem solving!
Brianna Donaldson, Director of Special Projects

Mo, Sleod -

Hana Silverstein, Special Projects Assistant

The Math Teachers’ Circle Network is a project
of the American Institute of Mathematics

600 E. Brokaw Road, San Jose, CA 95112
Phone: 408-350-2088

Email: circles@aimath.org

Website: www.mathteacherscircle.org

I3 www.facebook.com/mtcnetwork

y @MathTeachCircle
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A Problem Fit for a Princess

Apollonian Gaskets in History

by Christopher Goff

hen we first formed the San Joaquin
Math Teachers’ Circle, we decided
to design a logo that prominently
featured circles. We ended up
basing our logo on an Apollonian
gasket, a fractal generated from circles.
Little did we know that this logo would take us on
a journey, starting in ancient Greece, passing through
seventeenth century Bohemia, moving through twenti-
eth century fractals, and ultimately forming the focus of
one of our problem-solving sessions.

Warm-Up: Mutually Tangent Circles
I like to start this session with a warm-up problem
about mutually tangent circles (circles that touch at ex-
actly one point):

Find a circle that is tangent to all three circles in Figure
1 below. How many such circles can you find?

O

Teachers usually find a small circle between all three
given circles. They also find a big circle that circum-
scribes all three. In Figure 2 to the right, those two new
circles are drawn in red.

It’s usually harder to find the three circles in green,
as well as the three big blue circles that “contain” two
circles each.

Figure 1. The three given circles.
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Figure 2. The eight circles that are tangent to all three given circles.

In total, there are eight circles tangent to all three
given circles. Through discussion, we distinguish two
types of circles: circles that are externally tangent to
each other (i.e., the centers of the two tangent circles
lie on opposite sides of the mutual tangent line at the
point of tangency) or internally tangent (the centers lie
on the same side of this line). Another way to see this
is to look at whether the circles are curving in opposite
directions when they touch (externally tangent) or in
the same direction (internally tangent). These concepts
will play a role later.

Now, we can classify the eight circles we found based
on whether they are externally or internally tangent to
the three given circles.

It turns out that our warm-up problem is over 2,000
years old. It was originally posed by Apollonius of Perga,
a Greek mathematician who lived in the 200s BCE and
was a contemporary of Archimedes. Apollonius wrote
a book, Tangencies, in which he supposedly stated and
solved problems about different geometric objects that
were tangent to each other, including our warm-up
problem. I say “supposedly” because, unfortunately,



the original work is lost. We know about the book from
other sources, such as Pappus of Alexandria, who was
born over 500 years after Apollonius, and who men-
tioned Tangencies in his own work.

The Logo: Notice and Wonder

At this point, I ask the teachers to take a minute to look
at the logo for the San Joaquin MTC. Then, together, we
discuss the things we notice and wonder about the logo.
This usually brings up some very good questions.

Figure 3. The Apollonian gasket featured in the San Joaquin MTC’s logo, with the
initial 3 circles shaded in green.

Usually, teachers wonder: what do the numbers
mean? They notice that the larger circles contain
smaller numbers. Occasionally, they notice a pattern in
the numbers along one “arm™ 2, 3, 6, 11, 18, 27, 38, ...

Are there other patterns here? Will the numbers in
the circles always be integers?

A Princess’s Question
Before we attempt to answer all of these questions, let's
take another historical detour.

Princess Elisabeth of Bohemia (1618-1680) corre-
sponded with many great intellectuals of her time, and
her letters with René Descartes (1596-1650) are espe-
cially rich. The two often discussed his philosophical
ideas in addition to mathematics; he even dedicated his
book Principia Philosophiae to her. Perhaps to test the
capabilities of his analytic geometric techniques, which
were relatively new at the time, Princess Elisabeth asked
Descartes to solve the following problem:

Given three circles, find the circle that is externally
tangent to all three.

In other words, find the center and the radius of the
circle that is “between” the three given circles.

At this point, we take time in our Math Teachers’
Circle to try to solve the problem posed by Princess
Elisabeth, at least in the case illustrated by our logo,
where the three shaded circles are mutually tangent.

After discussing some strategies and partial solutions,
we take a look at Descartes’” solution. It is unlikely that
someone will find as nice a solution as the one Descartes
found. I can say that because I had great difficulty work-
ing out the algebra involved, even when trying to follow
along with Descartes! However, it turns out that when
the original three circles are mutually tangent to each
other, the solution can be written relatively simply, es-
pecially if we utilize the concept of curvature.

A Formula of Curvatures
The curvature k of a circle is defined as the reciprocal
of its radius r. That is, k = 1/r. Using this notation, if
there are four mutually tangent circles with curvatures
k,, k, k., and k,, then the curvatures satisfy the follow-
ing equation:

20k + k2 + k3 +kZ) = (ky + kg + kg + ky)?
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du cercle cherché, i'ay tous
les coftez des trois triangles
re@angles ADF, BDG,
CDF,| qui me donnent trois
équations, pour ce qu'en
chacun d'eux le quarré de
la bafe eft égal aux deux
quarrez des coftez. 10
Apres auoir ainfi fait autant d'équations que i'ay
fuppofé de quantitez inconnués, ie confidere fi, par 8
chaque équation, i'en puis trouuer vne en termes :
affez fimples; & fi ie ne le puis, ie tafche d'en venir &
bout, enioignant deux ou pluficurs équations par I'ad- 5
dition ou fouftra&ion; & enfin, lors que cela ne fuffit |
pas, i'examine feulement s'il ne fera point mieux de
changer les termes en quelque fagon. Car, en faifant
cét examen auec addreffe, on rencontre aifément les
plus courts chemins, & on en peut eflayer vne infinité 10

N,

R R, R

AF xd—7 & FD =y,
BG=e—y & DG»y,
CF=f+7 & FD=xy.

5 Puis, faifant le quarré de chacune de ces bafes égal
au quarré des deux coftez, i'ay les trois équations
fuivantes :

aa + 2ax +xx ©dd — 247 + 7+ )y,
bb 4 2bx 4 xx = ee — ey +yy+ 10
10 e +2ex +xxoff 247 +yy

& ie voy que, par I'vne d'elles toute feule, ie ne puis
troujuer aucune des quantitez inconnués, fans en tirer
la racine quarrée, ce qui embarrafferoit trop la quef-
tion. C'eft pourquoy ie viens au fecond moyen, qui
15 eftde ioindre deux équations enfemble, & i'appergois
incontinent que, les termes xx, yy & 77 eftant fem-
blables en toutes trois, fi i'en ofte vne d'vne autre,
laquelle ie voudray, ils s'effaceront, & ainfi ie n'auray

A problem posed by a Princess. From Oeuvres de Descartes, Vol. IV, published posthumously in 1901.

If we expand our definition of curvature to include
positive and negative values, then we can extend the
formula to apply to situations when circles are inter-
nally tangent as well as externally tangent. We just need
to include a relative minus sign between the curvatures
of internally tangent circles. We can even apply the for-
mula if one of the circles has an infinite radius - that is,
if it’s really a straight line with a curvature of 0.

Given the information that our logo lives inside a
large circle of radius 1, at this point, someone usually
notices that the numbers inside the circles refer to their
curvatures. If we look at the original three circles, which
have curvatures 2, 2, and 3, then we can find the curva-
ture k of a circle that is tangent to these three mutually
tangent circles.

222 +22+32+k¥)=(R2+2+3+k)>?
217 + k?) = (7 + k)?
k? —14k —15=0
k-15)k+1) =0

And so the curvature of the circle we are looking for
is either 15 or -1. If you look at the logo, you can see
that the circle of curvature 15 is nestled between circles
of curvature 2, 2, and 3. You can also see that the big
circle has curvature 1, and is internally tangent to these
three circles. Hence its curvature is notated as —1.

The teachers can now verify many of the curvatures
indicated in the San Joaquin MTC logo. They can even
create their own similar figure starting with different

06

curvatures. However, given the quadratic nature of the
governing formula, one will not always obtain nice in-
teger curvatures. As a result, I usually offer a few “nice”
starting options for teachers. Many can be found online.

Extensions

This kind of a shape is a fractal pattern called an Apol-
lonian Gasket, honoring Apollonius and his Tangencies.
In addition to fractals, other related concepts include
Soddy circles and Ford circles. Prominent number the-
orists have studied some of the properties of the num-
bers that appear as curvatures in a given gasket pattern.
Some have even generalized this formula to higher di-
mensions.

Our logo took us on quite a journey!

Christopher Goff, a co-founder of the San Joaquin County
MTC, is a Professor of Mathematics at the University of
the Pacific.

Ford circles.

MTCircular - Summer/Autumn 2017 - American Institute of Mathen aitic:s "



] °
What's in a Logo?
Many other circles besides the San Joaquin County MTC have designed logos to reflect their mathematical
and regional identities. Here is a sampling of logos from MTCs across the country.

Coastal Carolina MTC

Our logo consists of MTC pieced together with CCU, in Coastal Caro- I-I-I T E
lina University’s colors of teal and bronze. The design in the bottom left E
corner is a visual representation of the geometric series %2 + 74 + s + V16

+ Y5+ ...and sums to 1. ] u
MTC of Austin

We think of our MTC as a bridge between mathematicians and teachers.
By inscribing increasingly larger circles inside tangent semicircles, we
created a logo that looks like a bridge. The increasingly larger circles also
represent our impact over time, as problem solving spreads from teach-
ers to generations of students.

Navajo Nation MTC

The logo uses a Navajo wedding basket as a background. Over the top, it
superimposes elements of the seal of the Navajo Nation, which shows the
four sacred mountains at the cardinal direction points. We want to hear
our participant’s pride in saying, “I am Diné and I love mathematics.”

North Louisiana MTC

Our logo represents the things we love, Louisiana and math! One of our
members sketched the logo using an infinity symbol and the pi symbol
to create a fleur-de-lis.

San Diego MTC

Our logo reflects our coastal location. The spiral was generated by divid-
ing a disc into 12 equal parts and dropping perpendiculars from one ray
to the adjacent one. This beautiful seashell-like shape gives rise to many
interesting math questions of varying depth and difficulty.

South East Ohio MTC

The spiral conveys the sense of an open, inviting community that we seomt
hoped to achieve with the SEOMTC. The shape of Ohio in the O givesan =~ = 2300000
immediate sense of place.
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Polygons and Prejudice

Infroducing Social Issues Through Math
by Anne M. Ho and Tara T. Craig

here is a population of Polygons consisting of
Triangles and Squares. They live in a Polygon
neighborhood.

Polygons like having neighbors who look like
them. Therefore, the Squares are happy when they have
mostly Square neighbors, and the Triangles are happy liv-
ing in majority-Triangle neighborhoods.

Figure 1. A happy Triangle and an unhappy Square.

This scenario is an adaptation of the online simulation
“Parable of the Polygons” (Vi Hart and Nicky Case,
2014), which was based on the paper “Dynamic Mod-
els of Segregation” by game theorist Thomas Schelling
(1971). Schelling’s paper is a study of how small indi-
vidual biases can lead to collective bias.

We played a board game version of “Parable of the
Polygons” with the Coastal Carolina University Math
Teachers’ Circle during one of our sessions this year.
At the start of the session, we broke teachers into small
groups, and gave each group a foam board with a
preset “neighborhood” filled with happy and unhappy
Triangles and Squares. We explained to the participants
that the goal of the game is to make all the Polygons
happy. There are three rules:

* You can only move Polygons who are unhappy with
their immediate neighbors.

+ Once they’re happy where they are, you can’'t move
them until theyre unhappy with their neighbors
again.

« All Polygons believe two things: “I want to move if
fewer than one third of my neighbors are like me;”
and, “I want to move if I have no neighbors.”
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At first glance, this is simply an exercise in think-
ing logically and comparing fractions. For example, in
Figure 2, the Triangle in the middle has 7 immediate
neighbors. Three of these neighbors are Triangles. Since
%, > s, the middle Triangle is happy.

A\ A
ey
el L] b

Figure 2. The middle Triangle is happy.

On the other hand, in Figure 3, the middle Square
is unhappy because only 1 out of 4 of its neighbors are
Squares and 7, < V5.

A A
] ey

Figure 3. The middle Square is unhappy.

Initially, teachers were focused on winning the game.
However, all groups quickly noticed a pattern on their
boards, which was that in the process of trying to win,
they had segregated the Triangle and Square Polygons.

Suddenly, the game changed. “About halfway through
the game [ started seeing the pieces as people and not
just shapes,” said teacher Sydney Logan. “I then realized
I didn’t want to win anymore if the goal was segregation.”

The teachers began to explore solutions and modifi-
cations to the game that wouldn’t result in segregating
the populations. What if we changed the fraction to be
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larger than or smaller than '/;? What happens if we add
a third shape, such as Pentagons? How might we modify
the rules of the game?

While playing with modifications, several teachers
came up with the idea that an alternating pattern of
Triangles and Squares would make all of the Polygons
happy. However, with the preset boards and original
rules, achieving this pattern was next to impossible.
Groups discussed different initial board setups and
strategies to make diverse neighborhoods more feasible.

We finished the session with an open discussion.
First, we observed how a small individual bias can lead
to a larger collective bias, whether the bias is about race,
gender, class, occupation, or anything else.

We talked about how the game board would have
changed drastically if the Polygons additionally de-
manded some diversity in their neighborhoods to be
happy. Specifically, there would have been more inte-
grated neighborhoods of Triangles and Squares.

Finally, we talked about the usefulness of mathemati-
cal models. Although the simple Polygon population
model ignores many socioeconomic reasons for segre-
gation, it still gives a sense of the dynamics in a neigh-
borhood, and it opens the door to having conversations
about social issues in a math classroom.

After the session, we asked teachers to play with the
original online simulation (http://ncase.me/polygons/),
which includes methods to modify the original game
rules and graphs of segregation over time when a
simulation is run. We also asked everyone to examine
their own implicit biases through the research at Project
Implicit  (https://implicit.harvard.edu/implicit/index.
isp) and to utilize Teaching Tolerance’s Social Justice
Standards for the classroom (http://www.tolerance.org/
social-justice-standards), which are leveled for all the
stages in K-12 education and can help with curriculum
development.

A math classroom is an uncommon setting in which
to have conversations about segregation and bias.
However, this game provided a safe and comfortable
environment for some of our teachers to talk about
these complex issues.

We invite you to do the same.

Anne M. Ho is an assistant professor of mathematics and
Tara T. Craig a visiting assistant professor of mathemat-
ics, both at Coastal Carolina University. They are co-
founders of the Coastal Carolina MTC.
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Daydreams in Music

Patterns in Musical Scales
by Jeremy Aikin and Cory Johnson

Ibert Einstein once said: “If I were not a physicist, I would probably be a musician. I often think

in music. I live my daydreams in music. I see my life in terms of music.” There is no shortage of

examples of mathematicians and scientists who are also musicians. Perhaps it is the abundance of

patterns and structure prevalent in music that underpin these common interests. Such patterns can

be seen in the very building blocks of music, which motivated the development of an investigation
of musical scales for one of our Inland Empire Math Teachers’ Circle sessions.

A Model of the Piano

In order to study musical scales through the lens of mathematics, we first developed a mathematical model that
will allow us to see and to explore the patterns that arise. While musical scales can be played on many different
instruments, the piano may be the most natural instrument to use in our investigation since most people know
what it looks like and can easily notice patterns when looking at a piano keyboard.

bund hidhin binhiad badhuad e m\. \ ‘

Figure 1. Periodicity of a piano keyboard.

An observer might notice that the piano keyboard seems periodic, repeating the black keys in groups of two and
three. In Figure 1, we have outlined an example of a single period repeated across the keyboard in blue. In music,
such a period is called an octave. This periodicity enables us to restrict our attention to a single octave in our study
of musical scales.

We asked the participants, “How many keys are there in Figure 2¢2” The consen-
sus was twelve. Then, we asked, “How did you count the keys?”

Most of the participants had counted the black keys first, and then counted the
white keys. Others had counted all the keys in ascending order. This method of
counting allowed us to introduce the idea of ascending order and to define the
notion of a half-step (H) and a whole-step (W). A half-step describes the distance
between a key on the piano and the neighbor-
ing key, in ascending order (for example, from
, the key labeled 1 to the key labeled 2, or from

Figure 2. A single period (or octave). key 5 to key 6). A whole-step consists of two

half-steps (for example, from key 1 to key 3).

We constructed our model for the piano keyboard by bending Figure 2 into
a 12-gon so that keys 1 and 12 became neighboring keys. In the resulting model
(see Figure 3), adjacent wedges represent one half-step. The numbers that label
the wedges in Figure 3 correspond to the numbers that label the piano keys in
Figure 2.

1 3 5.6 8 10 12

Figure 3. A model of a piano keyboard.

10 MrCircular- Summer/Autumn 2017 - American Institute of Mathe matic:s  mm————————————



Exploring Musical Scales

In music, a scale is broadly defined as a collection of musical notes arranged
in order based on the frequencies of their pitches. Scales are often distin-
guished by the intervals between these pitches, and the intervals involved
in building a scale can vary greatly.

For our purposes, we restricted our definition of a musical scale to include
only whole-steps and half-steps. We further assumed that a musical scale
begins and ends on the same wedge in our model. In music, scales generally
begin and end on the same note, but in different octaves. In this sense, each
wedge in our model represents an entire class of equivalent notes.

Based on these assumptions, we arrived at the following mathematical
definition of a musical scale:

A musical scale is a shading of wedges in the model so that given any two
neighboring wedges, at least one wedge must be shaded.

Note that such a shading produces an associated sequence of W’s and
H’s. For example, a major scale is the sequence WWHWWWH. Studying
the model, if we begin on the wedge labeled 1, the major scale begins by
moving a whole-step to wedge 3, a whole-step to wedge 5, a half-step to
wedge 6, a whole-step to wedge 8, a whole-step to wedge 10, a whole-step
to wedge 12, and then a half-step back to wedge 1. This amounts to playing
the white keys on a piano in ascending order (note that if we instead started
on wedge 2 and constructed this scale, there would be a mixture of black
and white keys played on the piano).

Once we had established our definition of a musical scale, we asked
participants when two musical scales might be equivalent, and when they
might be considered different.

After some discussion, participants agreed that two musical scales would
be equivalent if they consisted of the exact same collection of shaded wedges
on our model. Figure 5 shows the scale given by the sequence WWWWWW
(in music, this is called a whole-tone scale). Note that if the scale begins on
any of the wedges labeled by an odd number, the result is exactly the same
collection of wedges. If instead we shade the same sequence on our model
beginning on an even labeled wedge, the result is a different collection of
wedges. Hence, there seem to be two different types of scales based on this
sequence.

Another interesting case is the diminished scale, represented by the se-
quence HWHWHWHW (shown in Figure 6). How many different types
of scales exist based on this sequence? Our MTC participants noticed that
by studying the rotational symmetries of the model for this scale, it was

7 6

Figure 4. A major scale.

Figure 5. A whole-tone scale.

12

Figure 6. A diminished scale.
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possible to visualize the different types of scales having
this sequence. For instance, rotating the diagram clock-
wise by one wedge, or 30°, resulted in a different col-
lection of shaded wedges. However, rotating clockwise
by three wedges, or 90°, gave us the same collection of
wedges as our initial configuration.

We concluded that there must be three different types
of scales having the sequence HWHWHWHW. Could
the same idea be used to determine the number of dif-
ferent types of major scales ( WWHWWWH)?

We asked the participants to create their own musical
scale by shading a collection of wedges on the model,
using only whole and half-steps. This was the most ex-
citing part of this session. From the diagram, they could
produce a sequence of W’s and H’s. By analyzing the
rotational symmetries, they were able to determine how
many different types of scales could be produced having
that sequence.

)

=,

!

i\ ¥

Figure 7. All 12 major scales.
By subdividing the keys in our model, we can keep

track of rotational symmetries. This figure shows that
there are 12 different major scales.
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We asked a natural follow-up question: Is it
possible to create musical scales having exactly
four different types? More generally, is it possible
to create musical scales in which there are exactly
five, six, seven, or eight different types? A chal-
lenging combinatorial question is: How many
different musical scales can our model produce?

Extensions

A nice way to extend this problem would be to
consider altering our definition of a musical scale
to include other intervals, such as a “three-halves-
step” (T). This definition might be stated as follows:
A musical scale is a shading of wedges in the model
so that given any three consecutive wedges, at least
one wedge must be shaded. For example, shading
the wedges in our model that are numbered 1, 4,
6,7, 8, 11 yields the sequence TWHHTW and re-
sults in a scale that in music is commonly referred
to as a blues scale. Changing the definition creates
new scales and allows one to extend the analysis of
rotational symmetries.

Reflection

The exploration of musical scales was an engaging
session that was accessible to elementary and sec-
ondary teachers with and without a musical back-
ground. After constructing the model of the piano
keyboard, teachers needed minimal instruction
from the facilitators. The questions generated
were thought-provoking and left room to expand
to a deeper level of thinking. As a bonus, we
brought in a portable keyboard and played the
scales created by our attendees. This brought the
session to life in a wonderful way, and enabled us
to hear the product of our mathematical thinking.

Jeremy Aikin and Cory Johnson are both assistant
professors of mathematics at California State Uni-
versity, San Bernardino. They are co-leaders of the
Inland Empire Math Teachers’ Circle, which is a
member of the Southern California MTC Network.
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Problem Posing

A Framework to Empower Participants
by Chris Bolognese and Mike Steward

he formulation of a problem is often more

essential than its solution, which may be

merely a matter of mathematical or experi-

mental skill. To raise new questions, new

possibilities, to regard old questions from a

new angle, requires creative imagination and makes real
advance in science.”

-Albert Einstein, 1938

What is Problem Posing?

Einstein recognized the fundamental importance of
problem posing, not only as productive practice, but as a
gateway to new understanding. The National Council of
Teachers of Mathematics (2000) recommends the inclu-
sion of problem posing in mathematics curricula. But
what do we mean by problem posing, exactly?

Silver (1994) writes, “Problem posing refers to both
the generation of new problems and the re-formulation
of given problems. Thus, posing can occur before, dur-
ing, or after the solution of a problem” (p. 19). Kilpatrick
(1987) further suggests that “problem formulation
should be viewed not only as a goal of instruction but
also as a means of instruction” (p. 123).

In this way, problem posing is both a learning tool
and an instructional tool. As a learning tool, it gives stu-
dents a way to communicate their mathematical ideas
and questions. As an instructional tool, it gives teachers
insight into students’ thinking, and helps teachers guide
classroom inquiry.

MTCs can support teachers in understanding and
implementing problem posing. What better entry point
into this mathematical activity, than for teachers to
practice posing problems together? This experience of
“thinking like a student” is an important step for teach-
ers who want their students to develop a practice of
problem posing.

The following vignettes illustrate the common pitfalls
and opportunities of facilitating an MTC.

A Tale of Two Circles, Part 1

Kimberlee is a sixth grade math teacher attending her
first MTC. Jenny, the facilitator, says that they will be
exploring the brownie problem tonight.

Jenny gives the brownie problem: “After baking a
tray of brownies for your students, you leave it on the
counter to cool. During that time, a thief takes a piece.
How can you share what’s left of the brownie between
your two classes?”

Jenny distributes a handout for teachers to work on.
The handout says:

Consider the brownie as a rectangle in the plane with
a rectangular region removed. We define a “cut” to be
a single line segment. Answer the following questions
under these definitions:

1. Prove there exists a cut that partitions the remaining
brownie into two equal areas.

2.Is there a consistent method to construct this cut
regardless of the placement of the portion removed?

Kimberlee hasn’t done proofs since tenth grade, so
she is not even sure how to start. She draws a picture of
the brownie pan on her paper (shown in Figure 1) and
notices that the remaining brownie is three pieces. She
wonders if this always happens, and what other situa-
tions are possible after the cut?

Figure 1. Kimberlee's brownie pan drawing.
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Kimberlee calls Jenny over to share her observation.
Jenny says, “That’s interesting, but it's not what we are
thinking about tonight”

A Tale of Two Circles, Part 2

The facilitator, Jermaine, introduces the same brownie
problem to his group. “Play around with it,” he says.
“Pay attention to any questions you have while you
explore. Then share your thoughts with your neighbor”

After ten minutes, Jermaine brings the participants
back together to share their questions with the whole
group. Eitan, a seventh grade math teacher, says, “I'm
wondering how many different ways you can cut the
brownie so everyone gets an equal share” John, a vet-
eran participant at another table, exclaims, “We were
wondering the same thing!”

Jermaine reorganizes the participants into new groups
to explore the questions they generated. Eitan and John
start to collaborate on their mutual question. For the
remainder of the session, Jermaine monitors their prog-
ress, occasionally asking tables to share their work with
the larger group. When Eitan and John get frustrated
with the question they chose to pursue, Jermaine has
follow-up questions to help provide insight.

What's the Takeaway?

In the first MTC, Jenny follows a prescribed sequence
of questions that may be unnatural or uninteresting to
Kimberlee and other participants.

In the second MTC, Jermaine allows Eitan and other
participants to follow their own questions, thereby
developing a sense of ownership in their pursuits.

How can we make our MTCs look more like the sec-
ond than the first?

All Questions Are Not Created Equal

The Columbus MTC organically developed a three-level
framework for understanding problem posing. The dif-
ferent levels do not pertain to the problem, but rather
the solver’s relationship to the problem. In this way,
problem posing is meant to be a personalized activity.
For example, two teachers may rate the same question
at different levels, or change their rating as their under-
standing of a question improves.
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In the table below, an example for each level is pro-

vided in the context of arithmetic:

Level |Description Example
A question for
Level 1 | which you already | What is 19 + 4?
know the answer.
A question for
which you do not Which is larger,
know the answer,
Level 2 429 + 384 or
but have a strategy 454 + 3692
that you feel will '
work.
Partition 13 into a
A question for sum of one or more
Level 3 which a strategy positive intergers.
for solving is not Which partition has
known to you. the largest possible
product?

We shared this framework at the 2017 Association
of Mathematics Teacher Educators conference. After a
brief introduction to the brownie problem, participants
generated questions and assigned levels to them:

« How can you cut the remaining brownie in half
with a single, one segment cut? (Level 1)

o What happens if the thief removes the entire
brownie? (Level 1)

o What if the thief took a piece that isn't the same
depth as the rest of the brownie tray? (Level 2)

o Under what conditions will the brownie pieces be
mathematically congruent? (Level 2)

o What if the pan is hexagonal and the thief takes a
hexagonal piece? (Level 2)

o What is the minimum number of cuts needed to
create n pieces of equal area? (Level 2)

« Could you cut the remaining brownie into 3 equal
pieces with just two cuts? (Level 3)

Level 2 questions predominated. Participants either
did not think of Level 1 or 3 questions, or they were
reluctant to share them. As one participant remarked,



“Level 1 probably isn't even worth saying, be-
cause if it’s kind of easy, then nobody is going
to mess with it.... But distinguishing between
Level 3 and Level 2 is important—An idea you
want to know, but have no idea where to start;
versus an idea that you have a semblance of,
an idea that you get. That’s a good entry point.”

Level 1 questions may seem trivial, but an important
part of mathematics is making sense of what is already
known. Level 1 questions help us make sense of the
current context, and can serve as reference points when
exploring a bigger question.

Level 2 and Level 3 questions both expand the bound-
aries of the context of the problem. If one determines a
strategy for solving the problem, one can begin to work
on the problem. If all known strategies are exhausted,
the question becomes a Level 3.

What's Next?
Before facilitating your next MTC, we ask that you con-
sider these two thoughts:

First, thoughtful facilitation requires paying attention
to participants’ inquiries. When MTC participants ask
the questions, we open a problem up to different per-
spectives and broaden the range of valid approaches to
the scenario. As one of our participants noted, “Problem
posing humanizes mathematics.”

Second, MTCs can support teachers in facilitat-
ing problem posing experiences with their students.
However, it’s not the full solution, as the dynamics of a
classroom and an MTC can vary greatly.

We encourage you to use problem posing and this
leveling framework to empower the mathematical
thinking of your own participants, and to provide a
means for teachers to empower their students.

Chris Bolognese is the K-12 math department chair at
Columbus Academy, co-founder of the Columbus MTC,
and current president of the Central Ohio Council of
Teachers of Mathematics. Mike Steward is an assistant
professor of mathematics at the United States Military
Academy at West Point. He helped facilitate the Co-
lumbus MTC as a graduate student at The Ohio State
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MTCs Featured in KQED MindShift

Math Teachers’ Circles were recently featured on KQED’s MindShift,
a blog that explores the future of learning. The article, "How Playing
With Math Helps Teachers Better Empathize With Students," by
Katrina Schwartz, focuses on a common theme among teachers
who have participated in Math Teachers’ Circles: By placing them-
selves in the position of learner, teachers are able to identify with
their students more. “Unlike other professional development op-
portunities, the focus of these circles is not on lesson plans or peda-
gogy, writes Schwartz. “Most of the time is spent working on and
discussing a problem that the facilitators bring, with the hope that
teachers will rediscover what they love about math and how it feels
to be a learner” The article profiles MTC leaders Michelle Manes
(MTC Hawai’i), Sara Good (Crooked River MTC), and Heather
Danforth (AIM MTC).

MTCs Advocating for Math in ESSA Plans

The National Council of Teachers of Mathematics (NCTM), the
Math Teachers’ Circle Network, and the Association of State
Supervisors of Mathematics (ASSM) have undertaken a
collaborative effort to help math education leaders identify
promising features of state and district ESSA plans. The Every
Student Succeeds Act (ESSA) is the education program that
replaced No Child Left Behind and restructured how and where
federal money for education is allocated. Every district, school, and
teacher will beimpacted by their state’s ESSA plan. This collaborative
effort is intended to help the mathematics education community
provide detailed and constructive feedback that promotes the
advancement of mathematics education explicitly in state and
district ESSA plans. Stay tuned for more details on how you can get
involved, and contact Brianna Donaldson (brianna@aimath.org)
with questions.
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Adams, Ghosh Hajra, Manes Win Awards

o S .
Adams Ghosh Hajra Manes

Kimberly Adams, an Instructor of Mathematics at The University of Tulsa and a member of the Tulsa MTC, was
awarded the Kermit E. Brown Award for Teaching Excellence, the highest recognition of teaching excellence given
by the College of Engineering and Natural Sciences. Adams is also a Julia Robinson Math Festival coordinator and
a frequent MTC facilitator.

Assistant Professor of Mathematics Sayonita Ghosh Hajra received the Hamline University Community Social
Justice Award. According to Hamline News, “As a new faculty member to Hamline, she has stepped in right away
to Hamline Elementary by incorporating community engagement into her mathematic classrooms with her stu-
dents” Ghosh Hajra coordinates the St. Paul Elementary MTC.

Michelle Manes, an Associate Professor of Mathematics at the University of Hawai’i at Manoa and a co-founder of
the Math Teachers’ Circle of Hawai'i (MaTCH), was honored with the Board of Regents’ Medal for Excellence. The

award is a tribute to faculty members who exhibit an extraordinary level of subject level mastery and scholarship,
teaching effectiveness, and creativity and personal values that benefit students.

NEWS ¢ EVENTS ¢ CALENDAR ¢ MEMBER CIRCLES ¢ VIDEOS ¢ RESOURCES

www.mathteacherscircle.org

'i www.facebook.com/mtcnetwork ¥ @MathTeachCircle

Stay connected. Stay informed. Get all the latest news on the MTC website or social media.
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Dispaiches

Local Updates from Across the Country

California '\,

Derek Mulkey’s lesson on Farey Fractions, developed
during the 2015 AIM MTC summer workshop, was
published in the January/February issue of the Oregon
Mathematics Teacher magazine.

- Contributed by Hana Silverstein

The San Francisco MTC thanks Proof School and Des-
mos for generously hosting its sessions this academic
year! With 75 total participants, averaging over two
dozen each session, folks seemed to have a great experi-
ence. Doing the math, we estimate that with the cost of
coffee, bagels, potstickers, and noodles, we can bring
cool escape-the-textbook mathematics to over 2000
students.

- Contributed by Paul Zeitz

Colorado -

The Northern Colorado MTC has been running con-
current sessions for teachers and students. Sessions for
teachers run from 5:30 to 8:00, and student sessions run
from 5:30 to 7:00. Both groups work on a similar prob-
lem for the first hour in separate classrooms, and then,
over dinner together, they share solutions and strate-
gies. We believe this structure helps teachers see what
students are capable of in terms of problem solving.
- Contributed by Gulden Karakok

lllinois « §
The Enterprise Foundation awarded $500 to the South-
west Chicago MTC for the 2017-18 school year.

- Contributed by Amanda Harsy

New York « =§

NYC Community of Adult Math Instructors members
E. Appleton, S. Farina, T. Holzer, U. Kotelawala, and M.
Trushkowsky published an article in the Spring 2017 is-
sue of the Coalition on Adult Basic Education’s Journal
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of Research and Practice for Adult Literacy, Secondary,
and Basic Education. The article, titled “Problem-Pos-
ing and Problem-Solving in a Math Teachers” Circle,”
describes the influence that one of our meetings had on
our work with visual patterns and adding problem for-
mulation to the math our students do.

In October 2016, NYC CAMI founding members E.
Appleton, S. Farina, T. Holzer, and M. Trushkowsky
presented a workshop titled “Teacher-Driven Learning
Circles” at the National Council for Teachers of
Mathematics (NCTM) Regional Conference in
Philadelphia. In April 2017, E. Appleton and M.
Trushkowsky presented workshops on mathematical
modeling at the National COABE Conference and at
the NYC Adult Basic Education Conference.

- Contributed by Mark Trushkowsky

Oklahoma » =

The Tulsa MTC hosted its fourth annual summer im-
mersion workshop in June 2017 for 37 middle school
teachers at the scenic Post Oak Lodge. Nationally recog-
nized math circle leaders Tatiana Shubin and Bob Klein
facilitated many sessions. The 22 teachers new to our
program gave glowing feedback. Returning teachers
thought this summer was the best one yet!

In February 2017, TMTC partnered with Circle
Cinema, Tulsa Girls’ Math Circle, and The University
of Tulsa for a free public screening of the documentary
Navajo Math Circles. Tatiana Shubin led a Q&A ses-
sion, and a Native American chef provided food for a
reception. The 200-seat theater was packed with math
administrators, parents, community education part-
ners, and Native American and Minority Education
communities.

Both of these events were made possible through the
generous support from NSF, NSA, The University of
Tulsa, and local foundations.

- Contributed by Marilyn Howard
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Global Math Week

Coming in October!

The Global Math Project aims to engage students and
teachers around the world in thinking and talking about
the same appealing piece of mathematics during a series
of annual Global Math Weeks. Inspired by the work of
code.org, which makes coding accessible for millions of
students across the globe, we will share the inherent joy,
wonder, relevance, and meaning of mathematics with
students everywhere and create a forum for the global
celebration of creative mathematical thinking.

What Happens During Global Math Week?

The very first Global Math Week takes place this fall.
Beginning October 10, 2017, one million students will
experience Exploding Dots, a favorite topic for MTCs
everywhere that was developed by Global Math Project
founding team member James Tanton. During Global
Math Week itself, teachers and other math leaders are
asked to commit to spending the equivalent of one class
period on Exploding Dots, and to share their students’
experience with the Global Math Project community
through social media. Teachers can choose a low-tech-
nology presentation format by using downloadable
pdf lesson plans as a guide. Alternatively, they can opt
for a technology-intensive experience, developed by
the Canadian education technology company Scolab,

lodin
6 doFI?s ®

A Mathewatical Jourvey from
Arthwetic to the (nfinite

which will consist of a collection of visually appealing
“islands” representing Exploding Dots topics. For those
who wish to delve deeper, additional materials will be
freely available on the Global Math Project website to
support further exploration of place value, arithmetic
algorithms, negative numbers, alternative bases, poly-
nomials, formal infinite series, and more.

How Can | Get Involved?
As a Partner Organization for the Global Math Project,
the MTC Network is asking our Member Circles to con-
sider becoming involved in some or all of the following
ways:

« Encourage your members to register for Global
Math Week, and to spread the word to their col-
leagues and friends.

« Ask members to consider becoming official Global
Math Project Ambassadors, who commit to build-
ing participation through posting on social media
and helping organize local events.

« Host an Exploding Dots training session for Circle
members and other interested educators in your
area.

See mathematics like you've never seen it before and
take part in a global conversation. Get started at
http://gmw.globalmathproject.org.

GLOBAL
MATH

U P[(ftc‘ny Moathermatics for Al
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